VSURF: An R Package for Variable Selection Using Random Forests

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

VSURF: An R Package for Variable Selection Using Random Forests

This paper describes the R package VSURF. Based on random forests, and for both regression and classification problems, it returns two subsets of variables. The first is a subset of important variables including some redundancy which can be relevant for interpretation, and the second one is a smaller subset corresponding to a model trying to avoid redundancy focusing more closely on the predict...

متن کامل

Variable selection using random forests

This paper proposes, focusing on random forests, the increasingly used statistical method for classification and regression problems introduced by Leo Breiman in 2001, to investigate two classical issues of variable selection. The first one is to find important variables for interpretation and the second one is more restrictive and try to design a good prediction model. The main contribution is...

متن کامل

Variable Selection Using Random Forests

One of the main topic in the development of predictive models is the identification of variables which are predictors of a given outcome. Automated model selection methods, such as backward or forward stepwise regression, are classical solutions to this problem, but are generally based on strong assumptions about the functional form of the model or the distribution of residuals. In this paper a...

متن کامل

FWDselect: An R Package for Variable Selection in Regression Models

In multiple regression models, when there are a large number (p) of explanatory variables which may or may not be relevant for predicting the response, it is useful to be able to reduce the model. To this end, it is necessary to determine the best subset of q (q ≤ p) predictors which will establish the model with the best prediction capacity. FWDselect package introduces a new forward stepwiseb...

متن کامل

rknn: an R Package for Parallel Random KNN Classification with Variable Selection

Random KNN (RKNN) is a novel generalization of traditional nearest-neighbor modeling. Random KNN consists of an ensemble of base k-nearest neighbor models, each constructed from a random subset of the input variables. A collection of r such base classifiers is combined to build the final Random KNN classifier. Since the base classifiers can be computed independently of one another, the overall ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: The R Journal

سال: 2015

ISSN: 2073-4859

DOI: 10.32614/rj-2015-018